Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.

نویسندگان

  • Rodrigo R Taveira
  • José S Diogo
  • Diogo C Lopes
  • Carlos B da Silva
چکیده

Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers.

The scaling and surface area properties of the wrinkled surface separating turbulent from nonturbulent regions in open shear flows are important to our understanding of entrainment mechanisms at the boundaries of turbulent flows. Particle image velocimetry data from high Reynolds number turbulent boundary layers covering three decades in scale are used to resolve the turbulent-nonturbulent inte...

متن کامل

Turbulent characteristics in flow subjected to bed suction and jet injection as a pier-scour countermeasure

The effect of a combined system of the bed suction and jet injection as a pier-scour countermeasure on the turbulent flow field is studied in a laboratory flume using an Acoustic Doppler Velocimeter (ADV). The three components of the velocities in the vertical symmetry plane in the equilibrium scour hole in front and rear of the pier under 3-jet injections and bed suction rate Qs/Q0 = 2%located...

متن کامل

Numerical Study of Interaction of Two Plane Parallel Jets

In the present work, a numerical simulation of two parallel turbulent jets was performed. The simulations were carried out by using the  standard, the  standard and the RSM models. A parametric study was also presented to determine the effect of the nozzles spacing and velocity ratio on the axial and transverse positions of the merge and combined points. Correlations between the various paramet...

متن کامل

Application of the velocity-dissipation probability density function model to inhomogeneous turbulent flows

Recently Pope and Chen [ Phys. Fluids A 2, 1437 ( 1990) ] developed a turbulence model based on the one-point Eulerian joint probability density function (pdf) of velocity and dissipation. The modeling is performed by constructing stochastic processes for the velocity and dissipation following fluid particles. In the original work, these models were constructed by reference to the known statist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2013